Abstract

The atomic displacement cascades generated by radiation in the iron-chromium alloy were studied using molecular dynamics simulation. Atomic displacement cascades were generated by the primary knock-on atom, which energy varied from 1 to 20 keV. The simulation of the dynamics of atomic displacement cascades and the calculation of the cascade parameters (durations of the main stages, the size of the radiation-damaged region) in the iron-chromium alloy were made for different energies of primary knock-on atom. Sizes of formed point defect clusters and their distribution in the crystallite volume were calculated. To study radiation damage in iron-chromium alloy caused by generation and evolution of displacement cascades we analyzed spatial and quantitative distribution of the generated point defects and their clusters.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.