Abstract

BackgroundKinase-inducible domain (KID) as transcriptional activator can stimulate target gene expression in signal transduction by associating with KID interacting domain (KIX). NMR spectra suggest that apo-KID is an unstructured protein. After post-translational modification by phosphorylation, KID undergoes a transition from disordered to well folded protein upon binding to KIX. However, the mechanism of folding coupled to binding is poorly understood.MethodologyTo get an insight into the mechanism, we have performed ten trajectories of explicit-solvent molecular dynamics (MD) for both bound and apo phosphorylated KID (pKID). Ten MD simulations are sufficient to capture the average properties in the protein folding and unfolding.ConclusionsRoom-temperature MD simulations suggest that pKID becomes more rigid and stable upon the KIX-binding. Kinetic analysis of high-temperature MD simulations shows that bound pKID and apo-pKID unfold via a three-state and a two-state process, respectively. Both kinetics and free energy landscape analyses indicate that bound pKID folds in the order of KIX access, initiation of pKID tertiary folding, folding of helix αB, folding of helix αA, completion of pKID tertiary folding, and finalization of pKID-KIX binding. Our data show that the folding pathways of apo-pKID are different from the bound state: the foldings of helices αA and αB are swapped. Here we also show that Asn139, Asp140 and Leu141 with large Φ-values are key residues in the folding of bound pKID. Our results are in good agreement with NMR experimental observations and provide significant insight into the general mechanisms of binding induced protein folding and other conformational adjustment in post-translational modification.

Highlights

  • CAMP response-element binding protein (CREB) as transcriptional activator can stimulate target gene expression in signal transduction upon associating with cAMP response-element binding protein (CREB) binding protein (CBP).[1], [2] CREB consists of four domains: C-terminal domain, two hydrophobic glutamine-rich domains (Q1 and Q2), and kinase-inducible domain (KID). [3] After post-translational modification, phosphorylated Kinase-inducible domain (KID) can bind the KIX domain of CREB binding protein (CBP)

  • Room-temperature molecular dynamics (MD) simulations suggest that phosphorylated KID (pKID) becomes more rigid and stable upon the KIX-binding

  • Kinetic analysis of high-temperature MD simulations shows that bound pKID and apo-pKID unfold via a three-state and a two-state process, respectively

Read more

Summary

Introduction

CAMP response-element binding protein (CREB) as transcriptional activator can stimulate target gene expression in signal transduction upon associating with CREB binding protein (CBP).[1], [2] CREB consists of four domains: C-terminal domain, two hydrophobic glutamine-rich domains (Q1 and Q2), and kinase-inducible domain (KID). [3] After post-translational modification, phosphorylated KID (pKID) can bind the KIX domain of CBP. CAMP response-element binding protein (CREB) as transcriptional activator can stimulate target gene expression in signal transduction upon associating with CREB binding protein (CBP).[1], [2] CREB consists of four domains: C-terminal domain, two hydrophobic glutamine-rich domains (Q1 and Q2), and kinase-inducible domain (KID). [3] After post-translational modification, phosphorylated KID (pKID) can bind the KIX domain of CBP. The NMR structure of pKID/KIX complex was released in 1997(pdb code: 1KDX).[7] The complex has five a-helices: aA, aB, a1, a2, and a3. Kinase-inducible domain (KID) as transcriptional activator can stimulate target gene expression in signal transduction by associating with KID interacting domain (KIX). After post-translational modification by phosphorylation, KID undergoes a transition from disordered to well folded protein upon binding to KIX. The mechanism of folding coupled to binding is poorly understood

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.