Abstract

A three-dimensional heterogeneous nucleation is simulated by classical molecular dynamics, where the Lennard-Jones gas and solid nano cluster-seed molecules have argon and aluminum properties, respectively. All dimensions of the wall are periodic and a soft core carrier gas within the system controls the temperature rise induced by latent heat of condensation. There are three shapes of cluster-seeds being cube, rod, and sphere, three classes of masses, and the simulation took place under nine supersaturation ratios, making a total of 81 calculations. An analysis of variance was performed under a three-way layout to analyze the cluster-seed and supersaturation ratio effects on the system. For supersaturation ratios above the critical value nucleation rates were evaluated, below growth rates, and overall liquefaction rates were each defined and calculated. Results show that the supersaturation ratio dominantly controls all rates, but seed characteristics are important for the growth of the largest cluster under the critical supersaturation ratio. Overall liquefaction increases subject to an escalation of supersaturation ratio and seed mass. However, the significance of the supersaturation ratio for overall liquefaction suggests that thermal diffusion is more dominant than mass interactions for this system. Homogeneous characteristics are also compared with the heterogeneous system to find that though nucleation may occur for an insufficient supersaturation ratio when a seed is within the system, the addition of a seed does not in fact facilitate the increase in rates of the phenomena at high supersaturation ratios. Finally a comparison with the classical nucleation theory asserts a 3 to 4 order of magnitude difference, which is within the lines of deviation when it comes to theory and molecular simulations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.