Abstract

Cellulose, hemicellulose, and lignin are the major chemical components in wood paper. Various types of wet and dry strength additives are used to enhance the optical and mechanical properties of recycled paper. One of the possible materials is the carbon nanotube. In order to explore the probability of the use of carbon nanotubes as reinforcing materials and to understand how carbon nanotubes affect the mechanical properties of paper, a single-walled carbon nanotube is inserted into a [Formula: see text] cellulose nanocrystal, and its mechanical properties are studied by using energy minimization and molecular dynamics (MD) simulations. During simulations, the crystals are stretched in the axial direction at a constant speed, and stress and strain are computed and recorded at the atomic level. Our results indicate that carbon nanotube can significantly enhance the mechanical properties of paper.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.