Abstract

The results of a molecular dynamics (MD) simulation study of liquid chlorine trifluoride (ClF3) at 217, 260, and 287 K are reported. The cubic simulation cell consists of 108 ClF3 molecules assumed to be interacting via site–site Lennard–Jones 12–6 pair potential. The parameters for F–F and Cl–Cl interaction are the same as used for the simulation of F2, and Cl2, respectively, and those for the Cl–F cross interaction are calculated using Lorentz–Berthelot rules. These results are then used to calculate various radial distribution functions characteristic of the liquid structure. Thermodynamic properties, namely, configurational energy, constant volume specific heat, and internal pressure are also reported. The time-dependent properties, mean square force and torque, self diffusion coefficient, and the quantum corrections to the free energy, were also obtained. The dimer configuration drawn based on the observed contact distances was found to be in good agreement with the results of matrix isolation infrared and laser Raman spectroscopic studies. Keywords: MD simulation, interhalogens, liquid structure, thermodynamic properties.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call