Abstract

In order to understand the thermal decomposition characteristics of 3,4-Bis(3-nitrofurazan-4-yl)furoxan (DNTF), the thermal decomposition reaction of DNTF at 300-4000K temperature programmed and constant temperatures of 2000K, 2500K, 3000K, 3500K, and 4000K was simulated by ab initio computational molecular dynamics method. The thermal decomposition mechanism of DNTF at different temperatures was analyzed from the aspects of product evolution, cluster, potential energy curve, and reaction path. The analysis of products shows that the initial small molecular products are NO, NO2, CO, CO2, and N2, and the final small molecular products are CO2 and N2. In the early stage, the ring-opening reaction of furoxan in DNTF structure is the main trigger reaction, and the C-C bond is broken at the initial stage of reaction. The carbon chain structure produced by decomposition forms various cluster structures in the form of C-N bond. In addition, it was found that temperature significantly affects the decomposition rate of DNTF, but does not change its initial decomposition path.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call