Abstract

The helium behavior in tungsten matrix is investigated by means of molecular dynamics. Firstly, the He-W potential is created by combining the ZBL potential with the data from an ab intio method. The formation energy calculations predict that the most stable configuration for helium in interstitial position is the tetrahedral site, which is in good agreement with recent research results. The helium diffusion is simulated in great detail in a temperature range from 400 K to 1200 K, and the migration energy is obtained to be between the experimental data and the ab intio calculation result. Finally, the mechanism of helium accumulation in its initial stage is investigated from the viewpoint of energy. It is found that as the helium cluster grows, the binding energy of each additional helium atom to the cluster tends to increase, which is conducible to the further growth of the helium cluster.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.