Abstract

Bimodal HDPE models were designed for extension-induced crystallization imitating the architecture of industrial bimodal HDPE copolymerized with ethylene and 1-butene, 1-hexene, or 1-octene. Crystallites of bimodal HDPE experienced the emergence of precursors, shish nuclei, and lamellae. The compact conformation of branched polymers impeded the rolling-over, deposition, and folding of chains on the substrate, and thus the formation of nuclei and lamella. Moreover, this retardation was intensified with the rising branch density and length, causing a depression of crystallinity and an increment of tie-chains concentration. Besides, when branches were all located on long chains, the compact conformation enlarged the resistance to the disentanglement of main chains, thus relatively fewer branched long chains were involved in the precursors or nuclei, resulting in the attenuation of lamella formation. Furthermore, for ethyl branched polymers, the coexistent orthorhombic and monoclinic crystallites were built up, and a few expanded monoclinic cells occurred for butyl branches because of the larger butyl reeling into lamella, while hexagonal crystals were created for ethyl/1-hexyl copolymers because of cocrystallization. Additionally, relative to ethyl, larger butyl and hexyl were preferential to be repelled outside crystals to form tie-chains, and hexyl branched polymers acquired relatively fewer tie-chains because of hexagonal eutectoid.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call