Abstract

The tool–workpiece interactions when a single-point diamond cutting tool with specific tool edge geometry is made to contact with a copper workpiece are evaluated by the molecular dynamics simulations under different temperatures, boundary conditions and model sizes for ultra-precision microcutting and in-process surface form measurement based on a force sensor–integrated fast tool servo. It is confirmed that the proposed multi-relaxation time method is effective to stabilize the workpiece molecular dynamics model over a wide temperature range up to the room temperature under which a practical microcutting and on-machine surface form metrology process are conducted. The boundary condition and model size of the molecular dynamics model are then optimized to make reliable and cost-effective simulations for evaluation of the elastic–plastic transition contact depth and the corresponding contact force when a diamond tool with a practical edge sharpness of up to 30 nm is employed for microcutting and on-machine surface form metrology.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.