Abstract

The effects of stretching and compressing on the thermal conductivity (TC) of silicon oxygen chain are studied by means of non-equilibrium molecular dynamics simulation. It is found that stretching can improve TC, and compressing may reduce the TC and can also increase the TC. This mechanism is explained based on the variation of phonon group velocity and the specific heat per volume with stretching and compressing. The distributions of bond angle and bond length under different normalized chain lengths are given. It is found that the bond length and bond angle in the skeleton chain would deviate from their original position. In addition, the phonon density of states (PDOSs) of silicon and oxygen atoms in the chains under different normalized chain lengths are analyzed. The overall trend is that the TC increases and the peaks of PDOSs move towards higher frequency with increasing stretch strain.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.