Abstract

Molecular dynamics methods have been used to study a 2 nm gold nanoparticle that is functionalized with four single stranded DNAs at the atomistic level. The DNA strands, which are attached to the [111] faces of a 201 atom truncated octahedral gold particle with a -S(CH2)6- linker, are found to be perpendicular to the surface of the particle, with the alkane chain lying on the surface. There are no significant hydrogen bonding interactions between the adsorbed ss-DNAs during the simulation. Even though the expected radius would be 49 Å (3.4 Å per base) for a Watson−Crick DNA structure, the simulation with 0.5 M salt shows a radius of about 29 Å (2.2 Å per base), which is a result that is consistent with recent experimental reports. It is also found that the sodium concentration within 30 Å of the gold particle is about 20% higher than the bulk concentration. This is consistent with an observed increase in the melting temperature of DNA when many functionalized gold particles are hybridized together.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.