Abstract
The possibility to conduct simulations of homogeneous nucleation of argon from a supersaturated vapor phase using a microcanonical or NVE ensemble is evaluated (NVE: number of particles N, volume V, and energy E are constant). In order to initiate a phase separation kinetic energy is removed from the system in one step which transfers the system into a supersaturated state. After this temperature jump the simulation is continued in a NVE ensemble. The simulations are performed for different initial-state points and different temperature jumps. The cluster formation and growth over the course of the adiabatic simulations are analyzed. The progression of the temperature being related to the cluster size in NVE systems is traced. Also the influence of the size of the simulation system is investigated. For a certain range of low supersaturation a dynamic coexistence between two states has been found. Furthermore, the obtained nucleation rates are correlated with two simple functions. By applying the nucleation theorems to these functions the size and excess energy of the critical cluster are estimated. The results are consistent with other theoretical data and experimental data available in the literature.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.