Abstract
Arenicin-2 is a 21 residue antimicrobial cyclic peptide, possessing one disulphide bond between residues Cys(3) and Cys(20). NMR and CD studies suggested that the structure of arenicin-2 in water represented a well formed, but highly twisted beta-hairpin. To investigate the spatial arrangement of the peptide side chains and to get a clear view of its possible amphipathic properties we performed molecular dynamics in explicit water. Four independent trajectories, 50 ns in length, were produced, starting from various initial conformations or by applying different simulation conditions. Arenicin-2 retained its beta-hairpin structure during simulations, although the residues close to strand ends were found to escape from the ideal hairpin conformation. The type I' beta-turn connecting the two strands fluctuated between type IV and II' beta-turn. Conversely, the right-handed twist of the beta-hairpin was well conserved with average twist value 203 degrees +/- 19 degrees per eight residues. Several nonbonded interactions, like hydrophobic interactions between aliphatic side chains, cation/pi-aromatic interactions, CH...pi aromatic bond and water bridges, contributed to the hairpin stabilization.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.