Abstract

Cisplatin and oxaliplatin are two widely-used anti-cancer drugs which covalently bind to a same location in DNA strands. Platinum agents make intrastrand and interstrand cross-links with the N7 atoms of guanine nucleotides which prevent DNA from polymerization by causing a distortion in the double helix. Molecular dynamics simulations and free energy calculations were carried out to investigate the binding of two platinum-based anti-cancer drugs with DNA. We compared the binding of these drugs which differ in their carrier ligands, and hence their potential interactions with DNA. When a platinum agent binds to nucleotides, it causes a high amount of deformation in DNA structure. To find the extent of deformation, torsion angles and base pair and groove parameters of DNA were considered. These parameters were compared with normal B-DNA which was considered as the undamaged DNA. The formation of hydrogen bonds between drugs and DNA nucleotides was examined in solution. It was shown that oxaliplatin forms more hydrogen bonds than cisplatin. Our results confirm that the structure of the platinated DNA rearranges significantly and cisplatin tries to deform DNA more than oxaliplatin. The binding free energies were also investigated to understand the affinities, types and the contributions of interactions between drugs and DNA. It was concluded that oxaliplatin tendency for binding to DNA is more than cisplatin in solvent environment. The binding free energy was calculated based on the MM/PBSA and MM/GBSA methods and the results of QM/MM calculations verified them.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call