Abstract
The microscopic molecular motion behavior between graphene and the liquid lubricant oil affects the rheological and frictional behavior of the nano-lubricant. However, the effect of graphene on the rheological behavior of industrial #3 lubricant oil has not been revealed. Thus, molecular dynamics (MD) and experimental study are used to investigate the effect of graphene concentration, size, temperature, and shear rate on the viscosity, mean square displacement (MSD), and density of graphene lubricant oil are investigated. The results show that the viscosity of GLO increases with the increase of graphene concentration and decreases with the increase of temperature (293 K–330 K). The MSD of graphene lubricant oil decreases with the increase of graphene size and increases with the increase of temperature. It is worth noting that graphene lubricant oil with 3G has the maximum value of MSD, which means the graphene has the best diffusion performance at this concentration. Compared to the base oil, the simulation and experiment viscosity values of the GOL with 3G increased by 22.9 % and 47.6 %, respectively. The GOL has the characteristics of a Newtonian fluid. This study can provide a reference for the application of graphene lubricant oil in industry.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.