Abstract

Nanoemulsions are a rapidly growing drug delivery technology capable of increasing a drug's aqueous solubility and stability. A novel oil‐in‐water nanoemulsion using a polymer, poly(decalactone) (PDL), instead of a conventional oil was recently reported. The amount of drug loading in a polymer‐based formulation is mainly governed by the drug's solubility in the polymer. Thus, herein the power of molecular dynamics simulations (MDS) for the calculation of the Hildebrand solubility parameter to predict PDL–drug miscibility is utilized. The MDS results are subsequently verified by formulating a PDL nanoemulsion with a dispersed droplet size of less than 200 nm by using a block copolymer of PDL (mPEG‐b‐PDL) as a surfactant, with seven different hydrophobic drug molecules. The MDS results are consistent with the experimental findings in terms of increment in the aqueous solubilities of the drugs in PDL nanoemulsion, where celecoxib demonstrated the highest while methotrexate exhibited the lowest solubility increment. Consequently, the reported MDS method can be utilized to predict a drug's solubility/miscibility in PDL to estimate the level of drug loading. The MDS facilitated screening of drugs could consequently emerge as an efficient approach in designing PDL nanoemulsions stabilized by mPEG‐b‐PDL or other similar systems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.