Abstract
Tertiapin (TPN), a short peptide isolated from the venom of the honey bee, is a potent and selective blocker of the inward rectifier K+ (Kir) channel Kir3.2. Here we examine in atomic detail the binding mode of TPN to Kir3.2 using molecular dynamics, and deduce the key residue in Kir3.2 responsible for TPN selectivity. The binding of TPN to Kir3.2 is stable when the side chain of either Lys16 (TPNK16-Kir3.2) or Lys17 (TPNK17-Kir3.2) of the toxin protrudes into the channel pore. However, the binding affinity calculated from only TPNK17-Kir3.2 and not TPNK16-Kir3.2 is consistent with experiment, suggesting that Lys17 is the most plausible pore-blocking residue. The alanine mutation of Kir3.2-Glu127, which is not present in TPN-resistant channels, reduces the inhibitory ability of TPN by over 50 fold in TPNK17-Kir3.2, indicating that Kir3.2-Glu127 is important for the selectivity of TPN.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.