Abstract
The cycloadditions of tetrazines with cyclopropenes and other strained alkenes have become among the most valuable bioorthogonal reactions. These reactions lead to bicyclic Diels-Alder adducts that spontaneously lose N2. We report quantum mechanical (QM) and quasiclassical trajectory simulations on a number of these reactions, with special attention to stereoelectronic and dynamic effects on spontaneous N2 loss from these adducts. QM calculations show that the barrier to N2 loss is low, and molecular dynamics calculations show that the intermediate is frequently bypassed dynamically. There is a large preference for N2 loss anti to the cyclopropane moiety rather than syn from adducts formed from reactions with cyclopropenes. This is explained by the interactions of the Walsh orbitals of the cyclopropane group with the breaking C-N bonds in N2 loss. Dynamical effects opposing the QM preferences have also been discovered involving the coupling of vibrations associated with the formation of the new C-C bonds in the cycloaddition step, and those of the breaking C-N bonds during subsequent N2 loss. This dynamic matching leads to pronounced nonstatistical effects on the lifetimes of Diels-Alder intermediates. An unusual oscillatory behavior of the intermediate decay rate has been identified and attributed to specific vibrational coupling.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.