Abstract

We have investigated the relaxation dynamics of poly (oxybutylene), POB, chains of various lengths, with different end groups (OH and CH3) in bulk and in confinement using dielectric relaxation spectroscopy. It is known that POB chains exhibit, apart from the segmental (main) relaxation process, the dielectric normal mode process which reflects the global chain motions. The comparative study of OH- and methyl-ended POB chains in bulk reveals the marked effect of association of hydroxyl end groups and indicates that the decrease in the density of the methylated specimens results in the acceleration of both relaxation processes, main and normal mode relaxations. For the confined POB chains the data indicate that the segmental relaxation process becomes faster (the effect being more pronounced for the methylated POB chains). A decrease in Tg of about 8K for the methyl- and 2K for OH-ended POB chains is estimated. Regarding the average relaxation rates of the normal mode process our data indicate that global chain mobility is not affected by the confinement.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call