Abstract

Molecular dynamics simulations of unconstrained alkali halide clusters with 8, 64, 216, 512, 1000, 1728, 2744, 4096, 5832, and 8000 ions have been carried out using the Born–Mayer–Huggins potential. All the clusters exhibit first-order melting and freezing transitions. The melting temperature increases with the number of ions and approaches the melting temperature of the bulk. Clusters with a number of ions less than approximately 1000 present hysteresis cycles and practically do not have phase coexistence. Clusters with a number of ions over 1000 present phase coexistence during a significant part of the transition region and hysteresis is progressively eliminated as the clusters size increases. It is suggested that hysteresis is an intrinsic characteristic of small clusters. In the transition regions the calculations have been performed by fixing the total energy of the clusters. It is shown that such a technique provides a better way of analyzing the transition mechanism than the usual procedure of fixing the temperature by ad hoc rescaling the velocities or by using canonical molecular dynamics or Monte Carlo. A detailed analysis of the melting transition is presented. The effects of interfaces and impurities are discussed. A method based on the velocity autocorrelation functions is proposed, in order to determine the molar fraction of the ions present in the solid and liquid phases as well as to produce colored snapshots of the phases in coexistence. The overall agreement of the estimated melting points and enthalpies of melting with the experiment is fairly good. The estimated melting point and enthalpy of melting for KCl in particular are in excellent agreement with the experimental values. © 2001 John Wiley & Sons, Inc. Int J Quantum Chem 84: 169–180, 2001

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call