Abstract

Long-chain organic molecules, 1-halododecane, RX (X = Cl,Br), adsorbed on Si(111)-7 x 7 were shown to form stable dimeric corrals; type I around corner holes and type II around corner adatoms S. Dobrin et al. [Surf. Sci. Lett. 600, L43 (2006)]. Here we examine the molecular dynamics of corral formation, in which mobile physisorbed adsorbates spontaneously convert to immobile. At high coverage the mechanism gives evidence of involving collisions between mobile vertical monomers, giving types I and II immobile horizontal dimers, vD +vD -->h2 (I, II). At low coverage mobile vertical monomers collide with immobile horizontal ones to form largely type-II corrals, vD + h-->h2 (II). Thermal reaction of corrals with X = Br brominates the surface by two distinct molecular pathways, thought to have more general applicability: "daughter-mediated" reaction of vertical v(A) with a low activation energy (here Ea approximately 5 kcal mol(-1)) and "parent-mediated" reaction of horizontal h or h2 with high activation energy (here Ea = 29 kcal mol(-1)).

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call