Abstract

Graphene-based applications often take place in aqueous environments, and they benefit from a molecular-level understanding of aqueous salt solutions in contact with graphene surfaces under different conditions. We study the aqueous solutions of electrolytes (LiCl, NaCl, KCl, MgCl2, and CaCl2) near the interface with a graphene sheet using classical molecular simulations. In order to model the graphene–ion interactions accurately, we use the effective polarizable model of Williams et al. ( J. Phys. Chem. Lett. 2017, 8, 703). In order to thoroughly characterize the solution structure at the graphene surface, in addition to standard structural properties, we employ our novel intermolecular bond definition based on the spatial distribution functions, which provides numbers of water–water and water–ion intermolecular bonds per water molecule and number of water molecules per ion as functions of the distance from the graphene surface in a completely self-consistent manner. This thus allows summations of the bo...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.