Abstract
Revealing a proper reaction coordinate in a chemical reaction is the key step towards elucidation of the molecular reaction dynamics. In this report, we investigated the dynamics of intramolecular charge transfer (ICT) of 8-aminopyrene-1,3,6-trisulfonic acid (APTS) occurring in the excited state by time-resolved fluorescence (TF) and TF spectra. Accurate reaction rates and rate-dependent nuclear wave packets in the product state allow detailed investigation of the molecular reaction dynamics. The ICT rate is solvent dependent: (34 fs)-1 , (87 fs)-1 , and (∞)-1 in water, formamide, and dimethylformamide, respectively. By recording spectra of the nuclear wave packets for different reaction rates, chemical species responsible for the emission spectra can be positively identified. The origin of the wave packets can be deduced from the amplitude change of the wave packets at different reaction rates, and the vibrational modes that are associated with the reaction coordinate could be identified. Theoretical calculations of the vibrational reorganization energies reproduce the experimental spectrum of the nuclear wave packets and corroborate the conclusions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Chemphyschem : a European journal of chemical physics and physical chemistry
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.