Abstract
Estrogen-related receptor (ERR) is a member of the nuclear receptor (NR) superfamily and has three subtypes α, β, and γ. Despite their strong homology with estrogen receptor (ER) α, ERRs cannot accommodate endogenous hormones. However, they are able to regulate gene expression without ligand binding. ERRα and ERRγ orchestrate the expression of genes involved in bioenergetic pathways, while ERRβ controls placental development and stem cell maintenance. Evidence from recent studies, including clinical research, has also demonstrated close associations of ERRs with the pathophysiology of hormone-related cancers and metabolic disorders including type 2 diabetes mellitus. This review summarizes the basic knowledge and recent advances in ERRs and their associated proteins, focusing on the subcellular dynamics involved in transcriptional regulation. Fluorescent protein labeling enabled monitoring of ERRs in living cells and revealed previously unrecognized characteristics. Using this technique, we demonstrated a role of ERRβ in controlling estrogen signaling by regulating thesubnuclear dynamics of ligand-activated ERα. Visualization of ERRs and related proteins and subsequent analyses also revealed a function of ERRγ in promoting liver lactate metabolism in association with LRPGC1, a recently identified lactic acid-responsive protein. These findings suggest that ERRs activate unique transregulation mechanisms in response to extracellular stimuli such as hormones and metabolic signals, implying an adaptive system behind the cellular homeostatic regulation by orphan NRs. Control of subcellular ERR dynamics will contribute toward the development of therapeutic approaches to treat various diseases including hormone-related cancers and metabolic disorders associated with abnormal ERR signaling pathways.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.