Abstract

We have made detailed comparison of the local and chain dynamics of a melt of 1,4-polybutadiene (PBD) as determined from experiment and molecular dynamics simulation at 353 K. The PBD was found to have a random microstructure consisting of 40% cis, 50% trans, and 10% 1,2-vinyl units with a number-average degree of polymerization 〈Xn〉 = 25.4. Local (conformational) dynamics were studied via measurements of the 13C NMR spin−lattice relaxation time T1 and the nuclear Overhauser enhancement (NOE) at a proton resonance of 300 MHz for 12 distinguishable nuclei. Chain dynamics were studied on time scales up to 22 ns via neutron spin−echo (NSE) spectroscopy with momentum transfers ranging from q = 0.05 to 0.30 A-1. Molecular dynamics simulations of a 100 carbon (Xn = 25) PBD random copolymer of 50% trans and 50% cis units employing a quantum chemistry-based united atom potential function were performed at 353 K. The T1 and NOE values obtained from simulation, as well as the center of mass diffusion coefficient an...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.