Abstract

EGFR-TK has been a target strongly associated with the development of NSCLCs. A structure-based virtual screening campaign was launched against EGFR-TK by virtual screening a 3D library of 167 commercially available small molecules downloaded from ChemBridge Corporation. The virtual screen identified 12 virtual hit molecules, which were biologically evaluated against an EGFR-TK inhibitor-sensitive NSCLC cell line, A549. A quinazoline-based molecule 1, was most active and displayed ∼58% cytotoxicity at 20 μM single dose. The mode of cell death suggests molecule 1 induced apoptosis, which is characteristic of EGFR-TK pathway inhibition. A 50 ns MD simulation was conducted on three different systems: free EGFR-TK, molecule 1 complexed to EGFR-TK, and the positive control, lapatinib, complexed to EGFR-TK. The MD simulations showed increase in stabilisation of the EGFR-TK structure for the complexed systems, i.e., lower RMSDs and RMSFs for complexed EGFR-TK structures compared to the free EGFR-TK system. The binding affinities were estimated using MM/PBSA in the last 10 ns of the MD simulation that revealed comparable binding free energies between molecule 1 and lapatinib, ΔGbind = −25.0 and −23.9 kcal/mol, respectively. Per residue binding free energy decomposition studies revealed non-polar interactions contributed mostly to the binding free energies. Residues Leu718, Arg841 and Phe856 were predicted to contribute most to the binding free energies for molecule 1.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call