Abstract
C60 fullerene has been utilized in various applications, including low friction and wear coatings, due to its unique molecular structure. In this work, molecular dynamics simulations were conducted to assess the nano-mechanical behaviour of a single C60 fullerene and its crystallized structure. A single C60 model and a model of a face-centred cubic structured C60 crystal with a one-unit-cell thickness were prepared for compression and unloading simulations based on the adaptive intermolecular reactive empirical bond-order potential for carbon. Force-displacement curves and molecule-averaged virial stresses were obtained during the simulation. The models applied during the compression and unloading processes were visualized to confirm the deformation behaviour. Both the single and crystal C60 models showed a perfectly reversible deformation before the point of force decrease that occurred during compression. In particular, the face-centred cubic structure of the crystal C60 model was severely altered during compression before the individual C60 molecules experienced permanent deformation. The maximum values of the normal virial stress in the compression direction before the permanent deformation of the molecules were almost same for both the single and crystallized models.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.