Abstract

Developing realistic three-dimensional growth models for quasicrystals is a fundamental requirement. The present work employs classical molecular dynamics simulations to investigate the adsorption of Al on a close-packed Al layer containing atomic vacancies. Simulation results show that the adsorbed Al atoms are located preferentially above and below the atomic vacancies in the close-packed layer, and the results obtained from a one-component system of atoms interacting via an interatomic pair potential for Al–Al appropriately reproduce the stacking motif seen in complex alloys such as the μ-Al4Mn phase. The simulations also reveal the formation of a deformed icosahedron. These results provide new insights into the growth mechanism and origin of complex alloys and quasicrystals.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call