Abstract

The structure of phosphorus selenide glasses with compositions close to the P(4)Se(3) stoichiometry with and without doping with a few atom % Ge has been investigated with Raman and (31)P NMR spectroscopic techniques. The results indicate that the structure of these glasses consists predominantly of P(4)Se(3) cage molecules. However, in spite of this structural similarity, doping with Ge results in a remarkably large increase in T(g). The dynamical behavior of the constituent P(4)Se(3) molecules in the Ge-free composition is investigated with a (31)P NMR hole-burning technique in the supercooled liquid state. These molecules perform large angle rotational reorientations near and above the glass transition with time scales similar to those expected for shear relaxation. Such coupling between molecular rotation and shear relaxation processes near T(g) is reminiscent of the dynamical behavior of organic molecular glass-forming liquids. However, this behavior is in stark contrast with the large temporal decoupling between molecular rotation and shear relaxation previously reported for a Ge-doped arsenic sulfide liquid that contained similarly structured As(4)S(3) cage molecules.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call