Abstract

Spin–lattice relaxation times T1 and T1d as well as NMR second moment were employed to study the molecular dynamics of riboflavin (vitamin B2) in the temperature range 55–350 K. The broad and flat T1 minimum observed at low temperatures is attributed to the motion of two nonequivalent methyl groups. The motion of the methyl groups is interpreted in terms of Haupt's theory, which takes into account the tunneling assisted relaxation. An additional mechanism of relaxation in the high temperature region is provided by the motion of a proton in one of the hydroxyl groups. The Davidson–Cole distribution of correlation times for this motion is assumed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.