Abstract

Environmental concerns demand prioritizing the development of eco-friendly refrigerants and prompting the replacement of conventional working fluids. The HFCs (hydrofluorocarbon) will be banned soon, and HFOs (hydrofluoroolefin) have been indicated as an alternative. In this study, numerous blends were attained by mixing two refrigerants, R-1234ze(E) and R-134a. Few blends are proposed as substitutes for high Global Warming Potential (GWP) fluids and are employed in refrigeration systems. The homogeneous condensation and thermophysical properties of nine binary blends of R-1234ze(E) + R-134a by varying composition with increment and decrement, respectively of 10% for each in a sequence were investigated using a molecular dynamics simulations scheme. The density, isobaric heat capacity, mean square displacement, internal potential energy and radial distribution function were investigated at constant pressure and different condensation temperatures (273.15 K to 328.15 K). The present study aims to check how the mass ratio of different refrigerants can affect mentioned properties. The current outcomes are compared, analyzed and discussed with earlier available simulation data for pure and mixtures of refrigerants and along with REFPROP data. The computed results show that Blend 4, with a 60.0+40.0% mass ratio composition and R-450A, has similar condensation behavior and thermophysical properties. The properties of Blend 5 with a composition 50.0+50.0% mass ratio are nearly equal to Blend 4 and R-450A. The R-450A has a good inclusive performance as a pure alternative refrigerant. The physical properties of pure R-1234ze(E), R-134a and its nine binary blends were investigated and these results may be helpful for new HFO refrigerants based on these blends.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.