Abstract

In this paper, molecular dynamics (MD) simulation software LAMMPS is used to simulate the elastic properties and stability of Ti-V single-crystal alloys. The relationship between the elastic constant and the mechanical stability of Ti-V alloy with a body-centered cubic (BCC) structure is studied. The energy relationship between TiV alloys with hexagonal close-packed (HCP) structure and BCC structure are compared, respectively. The effects of temperature, crystal orientations, and V content on the mechanical properties of TiV alloys are calculated under uniaxial tensile test. The results show that both ultimate tensile strength and plasticity of the Ti-V alloy with BCC structure decrease with the increase of temperature and V content, due to the phase transition from the BCC structure to the face-centered cubic (FCC) structure. Finally, it is identified that the modes of the transformation from BCC structure to FCC structure during the tensile process are BCC(100)//FCC(110), BCC(010)//FCC(10).

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call