Abstract

Graphene oxide(GO) has been widely used in asphalt modification due to its excellent properties. To reveal the interaction effect between GO and asphalt materials, the microscopic behavior and molecular structure changes of asphalt and GO/asphalt were investigated by molecular dynamics (MD) simulations. Mean square displacement (MSD) results showed that GO significantly inhibited the diffusion of molecules of asphalt components. Radial distribution function (RDF) results that GO destroys the original sol-type structure of asphalt. Simultaneously, GO adsorbed resins at low-temperature, adsorbed asphaltenes at high-temperature, and dispersed as a dispersed phase in the light components. The concentration of the dispersed phase in the asphalt colloidal structure was increased and the mutual attraction was enhanced. This improves the deformation resistance at high temperature, but weakens the ductility at low temperatures. To investigate the mechanism of action of GO-modified asphalt, the asphalt model and the GO/asphalt composite system model were constructed using the Amorphous Cell module in Materials Studio 2020 software. Subsequently, molecular dynamics simulations of the GO/asphalt composite system were performed using the Forcite module, while the interactions between atoms and molecules were described using the COMPASS II force field.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call