Abstract

The rugged energy landscape of biomolecules together with shortcomings of traditional molecular dynamics (MD) simulations require specialized methods for capturing large-scale, long-time configurational changes along with chemical dynamics behavior. In this report, MD-based methods for biomolecules are surveyed, involving modification of the potential, simulation protocol, or algorithm as well as global reformulations. While many of these methods are successful at probing the thermally accessible configuration space at the expense of altered kinetics, more sophisticated approaches like transition path sampling or Markov chain models are required to obtain mechanistic information, reaction pathways, and/or reaction rates. Divide-and-conquer methods for sampling and for piecing together reaction rate information are especially suitable for readily available computer cluster networks. Successful applications to biomolecules remain a challenge.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.