Abstract

The role of large-scale molecular motion in the self-organization and strengthening of liquid-crystal polymer fibers is discussed. It is shown that, at high temperatures, these objects are oriented liquid-crystal melts in which macromolecules remain extended but execute high-frequency conformational motions without leaving the tube approximately 20 A in diameter. This large-scale motion is referred to as quasi-segmental motion. During annealing, the chains involved in quasi-segmental motion can accomplish longitudinal displacements (reptate) over considerable distances. It is this reptation that favors spontaneous self-organization and, consequently, strengthening of liquid-crystal polymer fibers upon heat treatment. The role played by the quasi-segmental motion of rigid macromolecules in the strengthening of polymers of different types is compared with the role played by the segmental motion of flexible chains in this process.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.