Abstract

Abnormal expression of cyclin-dependent kinase 2 (CDK2)/cyclin-E is detected in colorectal, ovarian, breast and prostate cancers. The study of CDK2 with a bound inhibitor revealed CDK2 as a potential therapeutic target for several proliferative diseases. Several highly selective inhibitors of CDK2 are currently undergoing clinical trials, but possibilities remain for the identification and development of novel and improved inhibitors. For example, in silico targeting of ATP-competitive inhibitors of CDKs is of special interest. A series of 3,5-diaminoindazoles was studied using molecular docking and comparative field analyses. We used post-docking short time molecular dynamics (MD) simulation to account for receptor flexibility. The three types of structures, i.e., the highest energy, lowest energy and the structure most resembling the X-ray structure (three complexes) were identified for all ligands. QM/MM energy calculations were performed using a DFT b3lyp/6-31g* and MM OPLS-2005 force field. Conceptual DFT properties such as the interaction energy of ligand to protein, global hardness (η), HOMO density, electrostatic potential, and electron density were calculated and related to inhibitory activity. CoMFA and CoMSIA were used to account for steric and electrostatic interactions. The results of this study provide insight into the bioactive conformation, interactions involved, and the effect of different drug fragments over different biological activities.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.