Abstract
Abstract Molecular dynamics of side chain liquid crystalline polymers (LCP) and their components were studied using the technique of paramagnetic resonance. A cigar shape spin probe (COL) and a nearly spherical spin probe (TPL) were used to study the motions and order of the LCPs. Computer simulations of the observed spectra were performed. Both rotational correlation times and order parameters were extracted from these simulations. We found that LCPs containing 30 per cent and 50 per cent of mesogenic side chains had about the same viscosity as indicated by nearly equal tumbling times at the same temperature. In addition, the LCPs motion is considerably slower than that of the monomeric liquid crystal indicating that the spacer couples the motions of the side chains to those of the main chain. Rotations about axes perpendicular to the side chain are slowed more than rotations about an axis parallel to the side chain. DSC measurements were employed to study the phase transitions. The 30 and 50 per cent LC...
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.