Abstract

The paper presents the results, which are consistent within 2%, obtained both in the simulation of molecular dynamics and in the experiment on the study of the kinetic properties of molten FLiNaK with addition of lanthanide fluorides. The parameters of the Born-Huggins-Meier potential for the interaction of CeF3 or NdF3 with FLiNaK components are first calculated using the ab initio approach. The enthalpy of the system with dissolved CeF3 or NdF3 calculated in the model increases by ∼4.4% over the entire temperature range studied (800 ≤ T ≤ 1020 K). The self-diffusion coefficients of the molten salt components are calculated from the Einstein relation and also estimated from the shear viscosity data. The temperature dependences of the shear viscosity of molten FLiNaK as well as FLiNaK with additions of 15 mol % CeF3 or NdF3 are determined experimentally and by calculation. In addition, the dependence of shear viscosity on the concentration of CeF3 and NdF3 in FLiNaK is measured and calculated. The linear growth of the shear viscosity with the CeF3 and NdF3 concentrations is obtained. Experimental dependence is in good agreement with the simulated results in the case of NdF3, and there is the discrepancy while CeF3 addition. An analytical approximation of the temperature and concentration dependences for the viscosity of molten FliNaK and for the calculated self-diffusion coefficients of constituent elements is proposed. Linear approximation of temperature dependence of the self-diffusion coefficients of similar components in the corresponding extended systems is presented.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.