Abstract
Molecular dynamics simulations of a nanoscale liquid droplet on a solid surface are carried out in order to examine the pressure tensor field around the multiphase interfaces, and to explore the validity of Young's equation. By applying the virial theorem to a hemicylindrical droplet consisting of argon molecules on a solid surface, two-dimensional distribution of the pressure tensor is obtained. Tensile principal pressure tangential to the interface is observed around the liquid-vapor transition layer, while both tensile and compressive principal pressure tangential to the interface exists around the solid-liquid transition layer due to the inhomogeneous density distribution. The two features intermix inside the overlap region between the transition layers at the contact line. The contact angle is evaluated by using a contour line of the maximum principal pressure difference. The interfacial tensions are calculated by using Bakker's equation and Young-Laplace equation to the pressure tensor distribution. The relation between measured contact angle and calculated interfacial tensions turns out to be consistent with Young's equation, which is known as the description of the force balance at the three-phase interface.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.