Abstract

Molecular dynamics (MD) simulations are performed to study the fracture behavior of armchair and zigzag graphene sheets with V-shaped notches subjected to tensile loading. The effects of temperature and notches depth on the fracture characteristics of the graphene sheets are examined. The results show that the cracks propagate from the notch tip along the direction perpendicular to the loading axis for armchair sheets. This is different from the zigzag graphene propagating along the direction of 45° from the loading axis. In addition, the fracture energy of zigzag graphene sheets is larger than armchair one at the same temperature condition.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.