Abstract
Molecular dynamics (MD) simulation with the embedded-atom method (EAM)/alloy potential is used to investigate the property of the nanoscale hollow spherical Nickel (Ni) powder during the laser additive manufacturing (AM) process. The thermomechanical properties of the Ni nanopowder is also explored (1) at room temperature and (2) from room temperature to the melting temperature during laser AM of powder bed fusion. As a result, the optimum parameters for the laser AM process are proposed. The optimal coalescence temperature of the nanoscale hollow spherical Ni powder is in the range between 980 and 1421K, while the melting temperature is in the range between 1320 and 1470 K. The coalescence and melting temperatures are lower than the melting point of Ni (1728 K).
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.