Abstract

In this work, the effect of cyclopentane (CP) clathrate hydrate on the anomalous preservation of tetrahydrofuran (THF) hydrate under conditions outside its stability region is studied by using molecular dynamics simulations. The decompositions of pure structure II THF and CP clathrate hydrate, and also THF hydrate coated by CP hydrate, all with outer (001) surfaces exposed to vacuum, were simulated at different temperatures and characterized by the potential energy, the F3 order parameter, and visual inspection of snapshots of the hydrate system at different times. The upper bounding melting points of THF and the CP hydrate with the employed force fields were predicted to be 270 and 290 K, respectively, which were close to the experimental values of 277.5 and 281 K. To study the origins of anomalous preservation and superheating effects in hydrates, we placed layers of the higher-decomposition point CP hydrate as a coating on bulk THF hydrate to study the possible superheating of the THF hydrate. Whereas ...

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call