Abstract

Thyroxine receptor beta (TRβ) is a ligand-dependent nuclear receptor that participates in regulating multiple biological processes, particularly playing an important role in lipid metabolism regulation. TRβ is currently a popular therapeutic target for nonalcoholic steatohepatitis (NASH), while no drugs have been approved to treat this disease. MGL-3196 (Resmetirom) is the first TRβ agonist that has succeeded in phase III clinical trials for the treatment of NASH; therefore, studying its molecular mechanism of action is of great significance. In this study, we employed molecular dynamic simulation to investigate the interaction mode between MGL-3196 and TRβ at the all-atom level. More importantly, by comparing the binding patterns of MGL-3196 in several prevalent TRβ mutants, it was identified that the mutations R243Q and H435R located, respectively, around and within the ligand-binding pocket of TRβ cause TRβ to be insensitive to MGL-3196. This indicates that patients with NASH carrying these two mutations may exhibit resistance to the medication of MGL-3196, thereby highlighting the potential impact of TRβ mutations on TRβ-targeted treatment of NASH and beyond.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call