Abstract

The interaction between acrylamide acrylicacid copolymer (PAMAA) and the modified surface of nano-SiO2 is investigated using the molecular dynamic (MD) simulation. The binding energies (Ebinding) of interface, the concentration profiles of PAMAA and functional groups (carboxyl and acylamino) of corresponding model, the mean square displacements (MSD) and diffusion coefficients (D) of PAMAA in four systems with different modifiers are all calculated at 325 K in vacuum. Vinyl trimethoxy silane (VTEOS) shows best modification effect in the systems mentioned above. Furthermore, the effects of temperature on the interaction between VTEOS modified surface of nano-SiO2 and PAMAA are studied at 300, 325, 350, 375 and 400 K in aqueous solution. Interesting results show that, water molecular layer reduces with the increase of temperature, and then improves the interaction between PAMAA and VTEOS modified surface of nano-SiO2. The corresponding Ebinding of interface, the radial distribution functions (RDF) of carbon atoms on the surface and oxygen atoms of water molecules, the concentration profiles of PAMAA on the surface of nano-SiO2, the MSD and D of PAMAA are all studied seriously to find the reason of this counterintuitive phenomenon.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call