7-days of FREE Audio papers, translation & more with Prime
7-days of FREE Prime access
7-days of FREE Audio papers, translation & more with Prime
7-days of FREE Prime access
https://doi.org/10.1007/s11249-016-0712-9
Copy DOIJournal: Tribology Letters | Publication Date: Jul 8, 2016 |
Citations: 17 | License type: CC BY 4.0 |
The collision of two cylindrical hydrogen-free diamond-like carbon (DLC) asperities with approximately 60 % sp3 hybridization has been studied using classical molecular dynamics. The severity of the collision can be controlled by the impact parameter b that measures the width of the projected overlap of the two cylinders. For a cylinder radius of R = 23 nm, three collisions with b = 0.5 nm, b = 1 nm and b = 2.0 nm are compared. While for the two small b a single shear band between the collision partners and a strongly localized sp2/sp1 hybridised third-body zone between the asperities is observed, the b = 2 nm collision is accompanied by pronounced plastic deformation in both asperities that destabilize the metastable sp3-rich phase leading to a drastic increase in the amount of rehybridized tribomaterial. In addition, pronounced roughening of the cylinder surfaces, asymmetric material transfer and the generation of wear debris are found in this case. For the b = 0.5 and 1 nm collision, the evolution of third-body volume can be quantitatively described by a simple geometric overlap model that assumes a sliding-induced phase transformation localized between both asperities. For b = 2 nm, this model underestimates the third-body volume by more than 150 % indicating that plasticity has to be taken into account in simple geometric models of severe DLC/DLC asperity collisions.
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.