Abstract
A reliable bonding interface between steel and Ti alloy is required for producing a steel/Ti bimetal composite. In this study, molecular dynamic simulations and diffusion welding experiments using the hot isostatic pressing process were conducted to study the atomic diffusion at the Fe-Ti interface. The simulation results indicate that the diffusion layer thickness is thinner in single crystals compared to polycrystals at the same temperature. This difference may be explained by polycrystals having grain boundaries, which increase atomic disorder and facilitate diffusion. The radial distribution function (RDF) curves for Fe-Fe and Ti-Ti exhibit a similar pattern over time, with a main peak indicating the highest atom density within a specific radius range and relatively strong binding between the central atoms and their nearest neighbors. The observed changes in the diffusion coefficient with temperature in the simulations align well with the experimental results. This study enhances the understanding of Fe-Ti interface diffusion mechanism and provides valuable insights for broader applications of steel/Ti bimetal composites.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.