Abstract

Metal-organic frameworks (MOFs), with their unique porous structures and versatile functionality, have emerged as promising materials for the adsorption, separation, and storage of diverse molecular species. In this study, we investigate water adsorption in MOF-808, a prototypical MOF that shares the same secondary building unit (SBU) as UiO-66, and elucidate how differences in topology and connectivity between the two MOFs influence the adsorption mechanism. To this end, molecular dynamics simulations were performed to calculate several thermodynamic and dynamical properties of water in MOF-808 as a function of relative humidity (RH), from the initial adsorption step to full pore filling. At low RH, the μ3-OH groups of the SBUs form hydrogen bonds with the initial water molecules entering the pores, which triggers the filling of these pores before the μ3-OH groups in other pores become engaged in hydrogen bonding with water molecules. Our analyses indicate that the pores of MOF-808 become filled by water sequentially as the RH increases. A similar mechanism has been reported for water adsorption in UiO-66. Despite this similarity, our study highlights distinct thermodynamic properties and framework characteristics that influence the adsorption process differently in MOF-808 and UiO-66.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.