Abstract

Hepatic fibrosis increases mortality in humans with non-alcoholic steatohepatitis (NASH), but it remains unclear how fibrosis stage and progression affect the pathogenic mechanisms of NASH. This study investigates the transcriptional regulation and the impact of fibrosis stage, of pathways relating to hepatic lipid and cholesterol homeostasis, inflammation and fibrosis using RT-qPCR in the guinea pig NASH model. Animals were fed a chow (4% fat), a high-fat (20% fat, 0.35% cholesterol) or high-fat/high-sucrose (20% fat, 15% sucrose, 0.35% cholesterol) diet for 16 or 25 weeks (n = 7/group/time point). High-fat diets induced NASH. In NASH, markers of hepatic de novo lipogenesis were enhanced (e.g. FASN, > twofold, p < 0.05) while markers of mitochondrial, peroxisomal and cytochrome fatty acid oxidation were reduced (e.g. CPT1A > twofold, p < 0.05). Markers of fatty acid uptake were unaltered or decreased. Likewise, expression of cholesterol uptake and synthesis markers were decreased, whereas genes relating to lipid and cholesterol export were unaltered. Inflammatory and chemotactic cytokines were enhanced alongside fibrogenic pathways including increased hepatic stellate cell activation and migration, matrix deposition (e.g. MCP1, TNFα, β-PDGF and Col1a1, > threefold, p < 0.05) and decreased matrix degradation. Fibrosis stage (mild vs. severe) and progression did generally not affect the expression of the investigated pathways. This suggests that liver dysfunction at the transcriptional level is induced early and maintained throughout fibrosis progression, allowing potential treatments to target dysregulated pathways already at early disease stages. As the guinea pig NASH model mimics several aspects of human molecular pathophysiology, these results may be used to increase the current understanding of NASH pathology and explore future treatment targets.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.