Abstract

In this study, both endogenous and exogenous N(2)-hydroxymethyl-dG adducts in nasal DNA of rats exposed to 0.7, 2, 5.8, 9.1, or 15.2 ppm [(13)CD(2)] formaldehyde for 6 h were quantified by a highly sensitive nano-UPLC-MS/MS method. Our data clearly demonstrated that exogenous formaldehyde DNA adducts form in a highly nonlinear fashion, with a 21.7-fold increase in exposure causing a 286-fold increase in exogenous adducts. The ratio of exogenous/endogenous DNA adducts demonstrated that endogenous DNA adducts dominated at low exposures, comprising more than 99%. In contrast, exogenous adducts were not detectable in the bone marrow of rats exposed to 15.2 ppm [(13)CD(2)] formaldehyde.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call