Abstract

The semitransparent and colorful properties of organic solar cells (OSCs) attract intensive academic interests due to their potential application in building integrated photovoltaics, wearable electronics, and so forth. The most straightforward and effective method to tune these optical properties is varying the componential ratio in the blend film. However, the increase in device transmittance inevitably sacrifices the photovoltaic performance because of severe carrier recombination that originates from discontinuous charge-transport networks in the blend film. Herein, a strategy is proposed via the molecular-doping strategy to overcome these shortcomings. It is discovered that p-doping is able to release the trapped holes in segregated polymer domains leading to short-circuit current enhancement, while n-doping is more effective to fill the bandgap states producing a higher fill factor. More importantly, either type of doping improves the photovoltaic performance in the semitransparent photovoltaic devices. These discoveries provide a new pathway to breaking the compromise between the photovoltaic performance and optical transmittance in semitransparent OSCs, and hold promise for their future commercialization.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.